Premium
The role of feedback during singing and flight in Drosophila melanogaster
Author(s) -
EWING ARTHUR W.
Publication year - 1979
Publication title -
physiological entomology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.693
H-Index - 57
eISSN - 1365-3032
pISSN - 0307-6962
DOI - 10.1111/j.1365-3032.1979.tb00624.x
Subject(s) - biology , wing , dorsum , proprioception , pulse (music) , anatomy , courtship , drosophila melanogaster , neuroscience , physics , zoology , biochemistry , detector , gene , optics , thermodynamics
ABSTRACT. During Drosophila courtship ‘pulse song’, muscle potentials occur at two points during the cycle of neuromuscular events which result in a sound pulse being produced. The dorsal longitudinal, second and third dorsal ventral and axillary muscles show potentials 18 ms before each sound pulse while the first dorsal ventral, basalar and sternobasalar muscles fire 3 ms after the onset of each pulse. The timing of these events remains unaltered in animals with the antennae removed, indicating that acoustic feedback is not an important factor. Courting vestigial flies, in the absence of detectable wing base movements, produce indirect muscle potentials at the appropriate song inter‐pulse intervals. Thus proprioceptive feedback is also unimportant in determining the intervals between pulses. During putative ‘sine song’, ‘pulse song’ and flight in vestigial flies, however, the timing of basalar muscle potentials is abnormal. Also, if the wing is driven externally at a frequency different from that of normal flight, basalar and, to a lesser extent, first dorsal ventral muscles, are phase locked to the driving frequency. These two results suggest that the timing of those muscles which fire at the beginning of the sound pulses is set by proprioceptive feedback. A model of song production is proposed which takes into account the data from this and from previously published papers.