Premium
In vivo and transgenic animal models used to study visceral hypersensitivity
Author(s) -
Fioramonti J.,
Gebhart G. F.
Publication year - 2007
Publication title -
neurogastroenterology and motility
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.489
H-Index - 105
eISSN - 1365-2982
pISSN - 1350-1925
DOI - 10.1111/j.1365-2982.2006.00872.x
Subject(s) - visceral pain , nociceptor , sensitization , population , mechanosensitive channels , irritable bowel syndrome , immunology , medicine , nociception , hyperalgesia , pathology , biology , receptor , endocrinology , environmental health , ion channel
Measurement of visceral sensitivity in animals is mainly based on ‘pseudoaffective’ responses, which are brain stem reflexes. For example, in female, but not male rats, acute partial restraint stress induces hypersensitivity to colorectal distension. Mucosal mast cell density increases in rats after nematode infection or maternal deprivation, and both also induce colon hypersensitivity. Significantly, the proximity between nerves and mast cells has been found to be increased in adult rats submitted to maternal deprivation. Protease activation of the proteinase‐activated receptor‐2 also increases visceral nociception in rats, suggesting that an increase in paracellular permeability may be the primum movens in several animal models of visceral hypersensitivity. Accumulating evidence suggests that sensitization of visceral afferents is not restricted to the presumed nociceptor population, suggesting that most of the mechanosensitive afferent population can contribute to visceral discomfort and pain. Other inflammation‐produced changes (e.g. subunit composition of purine‐gated P2X channels) in visceral sensory neurones may also contribute to visceral hypersensitivity. This article discusses use of in vivo strategies (and transgenic mouse models) to reveal putative roles in mechanosensitivity and sensitization for molecules not previously considered to have mechanosensory functions.