z-logo
Premium
BslA(YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms
Author(s) -
Kobayashi Kazuo,
Iwano Megumi
Publication year - 2012
Publication title -
molecular microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.857
H-Index - 247
eISSN - 1365-2958
pISSN - 0950-382X
DOI - 10.1111/j.1365-2958.2012.08094.x
Subject(s) - biofilm , bacillus subtilis , biology , bacteria , penetration (warfare) , microbiology and biotechnology , wetting , biophysics , materials science , composite material , genetics , operations research , engineering
Summary Biofilms are surface‐associated bacterial aggregates, in which bacteria are enveloped by polymeric substances known as the biofilm matrix. Bacillus subtilis biofilms display persistent resistance to liquid wetting and gas penetration, which probably explains the broad‐spectrum resistance of the bacteria in these biofilms to antimicrobial agents. In this study, BslA (formerly YuaB) was identified as a major contributor to the surface repellency of B. subtilis biofilms. Disruption of bslA resulted in the loss of surface repellency and altered the biofilm surface microstructure. BslA localized to the biofilm matrix in an exopolysaccharide‐dependent manner. Purified BslA exhibited amphiphilic properties and formed polymers in response to increases in the area of the air–water interface in vitro . Genetic and biochemical analyses showed that the self‐polymerization activity of BslA was essential for its ability to localize to the biofilm matrix. Confocal laser scanning microscopy showed that BslA formed a layer on the biofilm surface. Taken together, we propose that BslA, standing for biofilm‐surface layer protein, is responsible for the hydrophobic layer on the surface of biofilms.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here