z-logo
Premium
Delineating the regions of human transferrin involved in interactions with transferrin binding protein B from Neisseria meningitidis
Author(s) -
Ling Jessmi M. L.,
Shima Collin H.,
Schriemer David C.,
Schryvers Anthony B.
Publication year - 2010
Publication title -
molecular microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.857
H-Index - 247
eISSN - 1365-2958
pISSN - 0950-382X
DOI - 10.1111/j.1365-2958.2010.07289.x
Subject(s) - transferrin , neisseria meningitidis , biology , neisseriaceae , microbiology and biotechnology , plasma protein binding , neisseria , genetics , biochemistry , bacteria
Summary Pathogenic bacteria in the Neisseriaceae possess a surface receptor mediating iron acquisition from human transferrin (hTf) that consists of a transmembrane iron transporter (TbpA) and a surface‐exposed lipoprotein (TbpB). In this study, we used hydrogen/deuterium exchange coupled to mass spectrometry (H/DX‐MS) to elucidate the effects on hTf by interaction with TbpB or derivatives of TbpB. An overall conserved interaction was observed between hTf and full‐length or N‐lobe TbpB from Neisseria meningitidis strains B16B6 or M982 that represent two distinct subtypes of TbpB. Changes were observed exclusively in the C‐lobe of hTf and were caused by the interaction with the N‐lobe of TbpB. Regions localized to the ‘lip’ of the C1 and C2 domains that flank the interdomain cleft represent sites of direct contact with TbpB whereas the peptides within the interdomain cleft that encompass iron binding ligands are inaccessible in the closed (holo) conformation. Although substantial domain separation upon binding TbpB cannot be excluded by the H/DX‐MS data, the preferred model of interaction involves binding hTf C‐lobe in the closed conformation. Alternate explanations are provided for the substantial protection from deuteration of the peptides encompassing iron binding ligands within the interdomain cleft but cannot be differentiated by the H/DX‐MS data.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here