Premium
Vancomycin tolerance in clinical and laboratory Streptococcus pneumoniae isolates depends on reduced enzyme activity of the major LytA autolysin or cooperation between CiaH histidine kinase and capsular polysaccharide
Author(s) -
Moscoso Miriam,
Domenech Mirian,
García Ernesto
Publication year - 2010
Publication title -
molecular microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.857
H-Index - 247
eISSN - 1365-2958
pISSN - 0950-382X
DOI - 10.1111/j.1365-2958.2010.07271.x
Subject(s) - autolysin , microbiology and biotechnology , vancomycin , streptococcus pneumoniae , biology , multidrug tolerance , bacteria , antibiotics , genetics , biofilm , staphylococcus aureus
Summary Vancomycin is frequently added to standard therapy for pneumococcal meningitis. Although vancomycin‐resistant Streptococcus pneumoniae strains have not been isolated, reports on the emergence of vancomycin‐tolerant pneumococci are a cause of concern. To date, the molecular basis of vancomycin tolerance in S. pneumoniae is essentially unknown. We examined two vancomycin‐tolerant clinical isolates, i.e. a purported autolysin negative (LytA ‐ ), serotype 23F isolate (strain S3) and the serotype 14 strain ‘Tupelo’, which is considered a paradigm of vancomycin tolerance. S3 was characterized here as carrying a frameshift mutation in the lytA gene encoding the main pneumococcal autolysin. The vancomycin tolerance of strain S3 was abolished by transformation to the autolysin‐proficient phenotype. The original Tupelo strain was discovered to be a mixture: a strain showing a vancomycin‐tolerant phenotype (Tupelo_VT) and a vancomycin‐nontolerant strain (Tupelo_VNT). The two strains differed only in terms of a single mutation in the ciaH gene present in the VT strain. Most interestingly, although the vancomycin tolerance of Tupelo_VT could be overcome by increasing the LytA dosage upon transformation by a multicopy plasmid or by externally adding the autolysin, we show that vancomycin tolerance in S. pneumoniae requires the simultaneous presence of a mutated CiaH histidine kinase and capsular polysaccharide.