Premium
Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation
Author(s) -
MashburnWarren Lauren,
Howe Jörg,
Garidel Patrick,
Richter Walter,
Steiniger Frank,
Roessle Manfred,
Brandenburg Klaus,
Whiteley Marvin
Publication year - 2008
Publication title -
molecular microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.857
H-Index - 247
eISSN - 1365-2958
pISSN - 0950-382X
DOI - 10.1111/j.1365-2958.2008.06302.x
Subject(s) - quorum sensing , pseudomonas aeruginosa , biology , bacterial outer membrane , vesicle , microbiology and biotechnology , bacteria , liposome , membrane , biophysics , biochemistry , biofilm , genetics , gene , escherichia coli
Summary Bacteria have evolved elaborate communication strategies to co‐ordinate their group activities, a process termed quorum sensing (QS). Pseudomonas aeruginosa is an opportunistic pathogen that utilizes QS for diverse activities, including disease pathogenesis. P. aeruginosa has evolved a novel communication system in which the signal molecule 2‐heptyl‐3‐hydroxy‐4‐quinolone (Pseudomonas Quinolone Signal, PQS) is trafficked between cells via membrane vesicles (MVs). Not only is PQS packaged into MVs, it is required for MV formation. Although MVs are involved in important biological processes aside from signalling, the molecular mechanism of MV formation is unknown. To provide insight into the molecular mechanism of MV formation, we examined the interaction of PQS with bacterial lipids. Here, we show that PQS interacts strongly with the acyl chains and 4′‐phosphate of bacterial lipopolysaccharide (LPS). Using PQS derivatives, we demonstrate that the alkyl side‐chain and third position hydroxyl of PQS are critical for these interactions. Finally, we show that PQS stimulated purified LPS to form liposome‐like structures. These studies provide molecular insight into P. aeruginosa MV formation and demonstrate that quorum signals serve important non‐signalling functions.