z-logo
Premium
Dimerization or oligomerization of the actin‐like FtsA protein enhances the integrity of the cytokinetic Z ring
Author(s) -
Shiomi Daisuke,
Margolin William
Publication year - 2007
Publication title -
molecular microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.857
H-Index - 247
eISSN - 1365-2958
pISSN - 0950-382X
DOI - 10.1111/j.1365-2958.2007.05998.x
Subject(s) - biology , actin , microbiology and biotechnology , ring (chemistry) , biophysics , organic chemistry , chemistry
Summary In bacteria, the actin‐like FtsA protein interacts with the tubulin‐like FtsZ protein, helping to assemble the cytokinetic Z ring, anchor it to the cytoplasmic membrane and recruit other essential divisome proteins. FtsA also interacts with itself, but it is not clear whether this self‐interaction is required for its full functionality. Here we describe new dominant negative missense mutations in Escherichia coli ftsA that specifically inhibit FtsA homodimerization and simultaneously cause disruption of Z rings. The negative effects of one mutation, M71A, were suppressed by altering levels of certain division proteins or by additional mutations in ftsA that promote increased integrity of the Z ring. Remarkably, when FtsA, FtsA‐M71A, and other mutants of FtsA that compromise self‐interaction were connected in a tandem repeat, they were at least partially functional and suppressed defects of an ftsZ84 (ts) mutation. This gain of function by FtsA tandems further suggested that FtsA monomers cause deleterious interactions with FtsZ and that increased dimerization or oligomerization of FtsA enhances its ability to promote Z‐ring integrity. Therefore, we propose that FtsZ assembly is regulated by the extent of FtsA oligomerization.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here