z-logo
Premium
Control of the respiratory metabolism of Thermus thermophilus by the nitrate respiration conjugative element NCE
Author(s) -
Cava Felipe,
Laptenko Oleg,
Borukhov Sergei,
Chahlafi Zahra,
BlasGalindo Emilio,
GómezPuertas Paulino,
Berenguer José
Publication year - 2007
Publication title -
molecular microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.857
H-Index - 247
eISSN - 1365-2958
pISSN - 0950-382X
DOI - 10.1111/j.1365-2958.2007.05687.x
Subject(s) - operon , thermus thermophilus , biology , transcription (linguistics) , promoter , biochemistry , respiratory chain , rna polymerase , sigma factor , microbiology and biotechnology , gene , gene expression , rna , enzyme , mutant , linguistics , philosophy , escherichia coli
Summary The strains of Thermus thermophilus that contain the n itrate respiration c onjugative e lement (NCE) replace their aerobic respiratory chain by an anaerobic counterpart made of the Nrc‐NADH dehydrogenase and the Nar‐nitrate reductase in response to nitrate and oxygen depletion. This replacement depends on DnrS and DnrT, two homologues to sensory transcription factors encoded in a bicistronic operon by the NCE. DnrS is an oxygen‐sensitive protein required in vivo to activate transcription on its own dnr promoter and on that of the nar operon, but not required for the expression of the nrc operon. In contrast, DnrT is required for the transcription of these three operons and also for the repression of nqo , the operon that encodes the major respiratory NADH dehydrogenase expressed during aerobic growth. Thermophilic in vitro assays revealed that low DnrT concentrations allows the recruitment of the T. thermophilus RNA polymerase σ A holoenzyme to the nrc promoter and its transcription, whereas higher DnrT concentrations are required to repress transcription on the nqo promoter. In conclusion, our data show a complex autoinducible mechanism by which DnrT functions as the transcriptional switch that allows the NCE to take the control of the respiratory metabolism of its host during adaptation to anaerobic growth.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here