Premium
The type III effector repertoire of Pseudomonas syringae pv. syringae B728a and its role in survival and disease on host and non‐host plants
Author(s) -
Vinatzer Boris A.,
Teitzel Gail M.,
Lee MinWoo,
Jelenska Joanna,
Hotton Sara,
Fairfax Keke,
Jenrette Jenny,
Greenberg Jean T.
Publication year - 2006
Publication title -
molecular microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.857
H-Index - 247
eISSN - 1365-2958
pISSN - 0950-382X
DOI - 10.1111/j.1365-2958.2006.05350.x
Subject(s) - pseudomonas syringae , effector , biology , nicotiana benthamiana , arabidopsis , arabidopsis thaliana , host (biology) , repertoire , pathogen , genetics , microbiology and biotechnology , gene , mutant , physics , acoustics
Summary The bacterial plant pathogen Pseudomonas syringae injects a large repertoire of effector proteins into plant cells using a type III secretion apparatus. Effectors can trigger or suppress defences in a host‐dependent fashion. Host defences are often accompanied by programmed cell death, while interference with defences is sometimes associated with cell death suppression. We previously predicted the effector repertoire of the sequenced bean pathogen P. syringae pv. syringae ( Psy ) B728a using bioinformatics. Here we show that Psy B728a is also pathogenic on the model plant species Nicotiana benthamiana (tobacco). We confirm our effector predictions and clone the nearly complete Psy B728a effector repertoire. We find effectors to have different cell death‐modulating activities and distinct roles during the infection of the susceptible bean and tobacco hosts. Unexpectedly, we do not find a strict correlation between cell death‐eliciting and defence‐eliciting activity and between cell death‐suppressing activity and defence‐interfering activity. Furthermore, we find several effectors with quantitative avirulence activities on their susceptible hosts, but with growth‐promoting effects on Arabidopsis thaliana , a species on which Psy B728a does not cause disease. We conclude that P. syringae strains may have evolved large effector repertoires to extend their host ranges or increase their survival on various unrelated plant species.