Premium
Plasmodium berghei calcium‐dependent protein kinase 3 is required for ookinete gliding motility and mosquito midgut invasion
Author(s) -
SidenKiamos Inga,
Ecker Andrea,
Nybäck Saga,
Louis Christos,
Sinden Robert E.,
Billker Oliver
Publication year - 2006
Publication title -
molecular microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.857
H-Index - 247
eISSN - 1365-2958
pISSN - 0950-382X
DOI - 10.1111/j.1365-2958.2006.05189.x
Subject(s) - biology , gliding motility , midgut , motility , microbiology and biotechnology , plasmodium berghei , plasmodium (life cycle) , apicomplexa , transmembrane protein , microneme , mutant , gene , plasmodium falciparum , parasite hosting , genetics , immunology , receptor , malaria , larva , world wide web , computer science , botany
Summary Apicomplexan parasites critically depend on a unique form of gliding motility to colonize their hosts and to invade cells. Gliding requires different stage and species‐specific transmembrane adhesins, which interact with an intracellular motor complex shared across parasite stages and species. How gliding is regulated by extracellular factors and intracellular signalling mechanisms is largely unknown, but current evidence suggests an important role for cytosolic calcium as a second messenger. Studying a Plasmodium berghei gene deletion mutant, we here provide evidence that a calcium‐dependent protein kinase, CDPK3, has an important function in regulating motility of the ookinete in the mosquito midgut. We show that a cdpk3 – parasite clone produces morphologically normal ookinetes, which fail to engage the midgut epithelium, due to a marked reduction in their ability to glide productively, resulting in marked reduction in malaria transmission to the mosquito. The mutant was successfully complemented with an episomally maintained cdpk3 gene, restoring mosquito transmission to wild‐type level. cdpk3 – ookinetes maintain their full genetic differentiation potential when microinjected into the mosquito haemocoel and cdpk3 – sporozoites produced in this way are motile and infectious, suggesting an ookinete‐limited essential function for CDPK3.