Premium
PerR controls Mn‐dependent resistance to oxidative stress in Neisseria gonorrhoeae
Author(s) -
Wu HsingJu,
Seib Kate L.,
Srikhanta Yogitha N.,
Kidd Stephen P.,
Edwards Jennifer L.,
Maguire Tina L.,
Grimmond Sean M.,
Apicella Michael A.,
McEwan Alastair G.,
Jennings Michael P.
Publication year - 2006
Publication title -
molecular microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.857
H-Index - 247
eISSN - 1365-2958
pISSN - 0950-382X
DOI - 10.1111/j.1365-2958.2006.05079.x
Subject(s) - biology , regulon , repressor , mutant , neisseria gonorrhoeae , periplasmic space , microbiology and biotechnology , gene expression , gene , biochemistry , escherichia coli
Summary In previous studies it has been established that resistance to superoxide by Neisseria gonorrhoeae is dependent on the accumulation of Mn(II) ions involving the ABC transporter, MntABC. A mutant strain lacking the periplasmic binding protein component (MntC) of this transport system is hypersensitive to killing by superoxide anion. In this study the mntC mutant was found to be more sensitive to H 2 O 2 killing than the wild‐type. Analysis of regulation of MntC expression revealed that it was de‐repressed under low Mn(II) conditions. The N. gonorrhoeae mntABC locus lacks the mntR repressor typically found associated with this locus in other organisms. A search for a candidate regulator of mntABC expression revealed a homologue of PerR, a Mn‐dependent peroxide‐responsive regulator found in Gram‐positive organisms. A perR mutant expressed more MntC protein than wild‐type, and expression was independent of Mn(II), consistent with a role for PerR as a repressor of mntABC expression. The PerR regulon of N. gonorrhoeae was defined by microarray analysis and includes ribosomal proteins, TonB‐dependent receptors and an alcohol dehydrogenase. Both the mntC and perR mutants had reduced intracellular survival in a human cervical epithelial cell model.