z-logo
Premium
Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences
Author(s) -
Lovett Susan T.
Publication year - 2004
Publication title -
molecular microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.857
H-Index - 247
eISSN - 1365-2958
pISSN - 0950-382X
DOI - 10.1111/j.1365-2958.2004.04076.x
Subject(s) - biology , dna replication , genetics , genome , dna , bacterial genome size , repeated sequence , mutation , computational biology , gene
Summary Mutations and rearrangements that occur by misalignment during DNA replication are frequent sources of genetic variation in bacteria. Dislocations between a replicating strand and its template at repetitive DNA sequences underlie the mechanism of these genetic events. Such misalignments can be transient or stable and can involve intramolecular or intermolecular DNA mispairing, even pairing across a replication fork. Paradoxically, these replication ‘slippage’ events both create and destroy repetitive sequences in bacterial genomes. This review catalogues several types of slippage errors, presents the cellular processes that act to limit them and discusses the consequences of this class of genetic events on the evolution of bacterial genomes and physiology.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here