Premium
Using isolation‐by‐distance‐based approaches to assess the barrier effect of linear landscape elements on badger ( Meles meles ) dispersal
Author(s) -
FRANTZ A. C.,
POPE L. C.,
ETHERINGTON T. R.,
WILSON G. J.,
BURKE T.
Publication year - 2010
Publication title -
molecular ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.619
H-Index - 225
eISSN - 1365-294X
pISSN - 0962-1083
DOI - 10.1111/j.1365-294x.2010.04605.x
Subject(s) - badger , meles , biological dispersal , biology , ecology , isolation by distance , gene flow , population , genetics , genetic variation , demography , sociology , gene
As the European badger ( Meles meles ) can be of conservation or management concern, it is important to have a good understanding of the species’ dispersal ability. In particular, knowledge of landscape elements that affect dispersal can contribute to devising effective management strategies. However, the standard approach of using Bayesian clustering methods to correlate genetic discontinuities with landscape elements cannot easily be applied to this problem, as badger populations are often characterized by a strong confounding isolation‐by‐distance (IBD) pattern. We therefore developed a two‐step method that compares the location of pairs of related badgers relative to a putative barrier and utilizes the expected spatial genetic structure characterized by IBD as a null model to test for the presence of a barrier. If a linear feature disrupts dispersal, the IBD pattern characterising pairs of individuals located on different sides of a putative barrier should differ significantly from the pattern obtained with pairs of individuals located on the same side. We used our new approach to assess the impact of rivers and roads of different sizes on badger dispersal in western England. We show that a large, wide river represented a barrier to badger dispersal and found evidence that a motorway may also restrict badger movement. Conversely, we did not find any evidence for small rivers and roads interfering with badger movement. One of the advantages of our approach is that potentially it can detect features that disrupt gene flow locally, without necessarily creating distinct identifiable genetic units.