z-logo
Premium
Pleistocene refugia and polytopic replacement of diploids by tetraploids in the Patagonian and Subantarctic plant Hypochaeris incana (Asteraceae, Cichorieae)
Author(s) -
TREMETSBERGER KARIN,
URTUBEY ESTRELLA,
TERRAB ANASS,
BAEZA CARLOS M.,
ORTIZ MARÍA ÁNGELES,
TALAVERA MARÍA,
KÖNIG CHRISTIANE,
TEMSCH EVA M.,
KOHL GUDRUN,
TALAVERA SALVADOR,
STUESSY TOD F.
Publication year - 2009
Publication title -
molecular ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.619
H-Index - 225
eISSN - 1365-294X
pISSN - 0962-1083
DOI - 10.1111/j.1365-294x.2009.04298.x
Subject(s) - biology , phylogeography , gene flow , genetic diversity , range (aeronautics) , glacial period , amplified fragment length polymorphism , pleistocene , ploidy , last glacial maximum , ecology , population , genetic variation , phylogenetic tree , paleontology , gene , biochemistry , materials science , demography , sociology , composite material
We report the phylogeographic pattern of the Patagonian and Subantarctic plant Hypochaeris incana endemic to southeastern South America. We applied amplified fragment length polymorphism (AFLP) and chloroplast DNA (cpDNA) analysis to 28 and 32 populations, respectively, throughout its distributional range and assessed ploidy levels using flow cytometry. While cpDNA data suggest repeated or simultaneous parallel colonization of Patagonia and Tierra del Fuego by several haplotypes and/or hybridization, AFLPs reveal three clusters corresponding to geographic regions. The central and northern Patagonian clusters (∼38–51° S), which are closer to the outgroup, contain mainly tetraploid, isolated and highly differentiated populations with low genetic diversity. To the contrary, the southern Patagonian and Fuegian cluster (∼51–55° S) contains mainly diploid populations with high genetic diversity and connected by high levels of gene flow. The data suggest that H. incana originated at the diploid level in central or northern Patagonia, from where it migrated south. All three areas, northern, central and southern, have similar levels of rare and private AFLP bands, suggesting that all three served as refugia for H. incana during glacial times. In southern Patagonia and Tierra del Fuego, the species seems to have expanded its populational system in postglacial times, when the climate became warmer and more humid. In central and northern Patagonia, the populations seem to have become restricted to favourable sites with increasing temperature and decreasing moisture and there was a parallel replacement of diploids by tetraploids in local populations.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here