Premium
Role of inbreeding depression and purging in captive breeding and restoration programmes
Author(s) -
LEBERG PAUL L.,
FIRMIN BRIGETTE D.
Publication year - 2008
Publication title -
molecular ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.619
H-Index - 225
eISSN - 1365-294X
pISSN - 0962-1083
DOI - 10.1111/j.1365-294x.2007.03433.x
Subject(s) - inbreeding depression , biology , inbreeding , population fragmentation , mosquitofish , population , minimum viable population , small population size , population viability analysis , genetic load , effective population size , population size , captive breeding , zoology , gambusia , ecology , endangered species , genetics , demography , habitat , fishery , genetic variation , sociology , fish <actinopterygii> , gene
Inbreeding depression is a major force affecting the evolution and viability of small populations in captive breeding and restoration programmes. Populations that experience small sizes may be less susceptible to future inbreeding depression because they have been purged of deleterious recessive alleles. We review issues related to purging, as they apply to the management of small populations, and discuss an experiment we conducted examining purging in populations of mosquitofish ( Gambusia affinis ). Purging is an important process in many small populations, but the literature contains a diversity of responses to purging both within and among studies. With the exception that slow inbreeding results in more purging and less threat to population viability, there seem to be few consistent trends that aid in prediction of how a purging event will affect a population. In our examination of purging on population viability in mosquitofish, single or multiple bottlenecks do not appear to have resulted in any purging of the influence of genetic load on population growth. Rather, serial bottlenecks resulted in a marked decline in population growth and an increase in extinction. Our results, taken together with those of reviewed studies, suggest that in small populations there is great uncertainty regarding the success of any single purging event in eliminating inbreeding depression, together with the high likelihood that purging will depress population viability through the fixation of deleterious alleles. In management of captive breeding and restoration programmes, the common practice of avoiding inbreeding and small population sizes should be followed whenever possible.