z-logo
Premium
Radiation and speciation of pelagic organisms during periods of global warming: the case of the common minke whale, Balaenoptera acutorostrata
Author(s) -
PASTENE LUIS A.,
GOTO MUTSUO,
KANDA NAOHISA,
ZERBINI ALEXANDRE N.,
KEREM DAN,
WATANABE KAZUO,
BESSHO YOSHITAKA,
HASEGAWA MASAMI,
NIELSEN RASMUS,
LARSEN FINN,
PALSBØLL PER J.
Publication year - 2007
Publication title -
molecular ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.619
H-Index - 225
eISSN - 1365-294X
pISSN - 0962-1083
DOI - 10.1111/j.1365-294x.2007.03244.x
Subject(s) - biology , allopatric speciation , upwelling , balaenoptera , pelagic zone , minke whale , population , ecology , whale , demography , sociology
How do populations of highly mobile species inhabiting open environments become reproductively isolated and evolve into new species? We test the hypothesis that elevated ocean‐surface temperatures can facilitate allopatry among pelagic populations and thus promote speciation. Oceanographic modelling has shown that increasing surface temperatures cause localization and reduction of upwelling, leading to fragmentation of feeding areas critical to pelagic species. We test our hypothesis by genetic analyses of populations of two closely related baleen whales, the Antarctic minke whale ( Balaenoptera bonaerensis ) and common minke whale ( Balaenoptera acutorostrata ) whose current distributions and migration patterns extent are largely determined by areas of consistent upwelling with high primary production. Phylogeographic and population genetic analyses of mitochondrial DNA control‐region nucleotide sequences collected from 467 whales sampled in four different ocean basins were employed to infer the evolutionary relationship among populations of B. acutorostrata by rooting an intraspecific phylogeny with a population of B. bonaerensis . Our findings suggest that the two species diverged in the Southern Hemisphere less than 5 million years ago (Ma). This estimate places the speciation event during a period of extended global warming in the Pliocene. We propose that elevated ocean temperatures in the period facilitated allopatric speciation by disrupting the continuous belt of upwelling maintained by the Antarctic Circumpolar Current. Our analyses revealed that the current populations of B. acutorostrata likely diverged after the Pliocene some 1.5 Ma when global temperatures had decreased and presumably coinciding with the re‐establishment of the polar–equatorial temperature gradient that ultimately drives upwelling. In most population samples, we detected genetic signatures of exponential population expansions, consistent with the notion of increasing carrying capacity after the Pliocene. Our hypothesis that prolonged periods of global warming facilitate speciation in pelagic marine species that depend on upwelling should be tested by comparative analyses in other pelagic species.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here