z-logo
Premium
Bioavailability, distribution and depletion of monensin in chickens
Author(s) -
HENRI J.,
BUREL C.,
SANDERS P.,
LAURENTIE M.
Publication year - 2009
Publication title -
journal of veterinary pharmacology and therapeutics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.527
H-Index - 60
eISSN - 1365-2885
pISSN - 0140-7783
DOI - 10.1111/j.1365-2885.2009.01063.x
Subject(s) - monensin , pharmacokinetics , bioavailability , volume of distribution , chemistry , broiler , distribution (mathematics) , chromatography , zoology , pharmacology , mathematics , biochemistry , medicine , biology , food science , mathematical analysis
The pharmacokinetics of monensin including apparent volume of distribution, total body clearance, systemic bioavailability, partition coefficients and tissue residues were determined in chickens. The drug was given by intravenous injection in the left wing vein at the dose of 0.46 mg/kg and by intracrop administration at the dose of 4 mg/kg according to a destructive sampling. The pharmacokinetic variables were compared after noncompartmental, naïve averaged, naïve pooled and nonlinear mixed‐effects modelling analyses. Partition coefficients and tissue residues were determined after a treatment with feed additives (125 mg/kg of feed) of 33 days. The clearance, volume of distribution and bioavailabilty were approximately 2.2 L/h/kg, approximately 9 L/kg and approximately 30% respectively except with nonlinear mixed effects models that presented values of 1.77 L/h/kg, 14.05 L/kg and 11.36% respectively. Tissue/plasma partition coefficients were estimated to 0.83, 3.39 and 0.51 for liver, fat and thigh muscle respectively. Monensin residues after treatment were not detected 6 h after withdrawal except for fat where monensin was still quantifiable 12 h after. Pharmacokinetic variables seem to be inaccurate when assessed with non linear mixed‐effects modelling associated to destructive sampling in chickens. Values varied slightly with noncompartmental, naïve averaged and naïve pooled analyses. The absorption, elimination and partition parameters will be incorporated into a physiologically based pharmacokinetic model and the depletion study will be used to test the ability of this model to describe monensin residues in edible tissues under different dosage regimens.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here