z-logo
Premium
Investigating filler morphology and mechanical properties of new low‐shrinkage resin composite types
Author(s) -
LEPRINCE J.,
PALIN W. M.,
MULLIER T.,
DEVAUX J.,
VREVEN J.,
LELOUP G.
Publication year - 2010
Publication title -
journal of oral rehabilitation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.991
H-Index - 93
eISSN - 1365-2842
pISSN - 0305-182X
DOI - 10.1111/j.1365-2842.2010.02066.x
Subject(s) - materials science , composite material , flexural strength , shrinkage , methacrylate , curing (chemistry) , composite number , thermogravimetric analysis , polymerization , polymer , chemistry , organic chemistry
Summary  Three types of low‐shrinkage composites are today commercially available: Ormocers, cationic ring‐opening curing systems and highly filled methacrylate‐based materials, which cure via free‐radical polymerization mechanisms. The aim of this study was to characterize the inorganic fraction of materials belonging to each type and to compare their mechanical properties. Two Ormocers (Admira and an experimental Ormocer V35694), one ring‐opening composite (Filtek Silorane) and five methacrylate‐based composites [Filtek Supreme XT, Tetric EvoCeram, Grandio, Synergy D6 (Coltène‐Whaledent, Langenau, Germany) and an experimental material, V34930] were tested. Inorganic fillers were quantified by thermogravimetric analysis and morphologically characterized by scanning electron microscopy. Dynamic modulus was determined by an impulse excitation technique, static elastic moduli and flexural strength by a three‐point bending method. The results were analyzed using anova tests ( P  < 0·05) and linear correlations. Grandio, V34930 and V35694 exhibited significantly higher filler mass fractions. Both dynamic and static moduli of Grandio and V34930 were significantly higher than the other materials ( P  < 0·05), although no significant difference in flexural strength was observed between material type ( P  > 0·05). From the present findings, it was suggested that V35694 and Filtek Silorane exhibit comparable properties to conventional methacrylate‐based composites, although clinically the cavity type and location must guide material choice. Under high occlusal load, the use of Grandio and V34930 might be favoured. For small cavities, alternative technologies could be preferred as the need for mechanical resistance is lower and the potential for stress generation is greater.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here