z-logo
Premium
Maternal Perinatal Undernutrition has Long‐Term Consequences on Morphology, Function and Gene Expression of the Adrenal Medulla in the Adult Male Rat
Author(s) -
Laborie C.,
MolendiCoste O.,
Breton C.,
Montel V.,
Vandenbulcke F.,
Grumolato L.,
Anouar Y.,
Vieau D.
Publication year - 2011
Publication title -
journal of neuroendocrinology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.062
H-Index - 116
eISSN - 1365-2826
pISSN - 0953-8194
DOI - 10.1111/j.1365-2826.2011.02159.x
Subject(s) - endocrinology , medicine , malnutrition , adrenal medulla , medulla , biology , gene expression , gene , genetics , catecholamine
Epidemiological studies suggest that maternal undernutrition sensitises to the development of chronic adult diseases, such as type 2 diabetes, hypertension and obesity. Although the physiological mechanisms involved in this ‘perinatal programming’ remain largely unknown, alterations of stress neuroendocrine systems such as the hypothalamic‐pituitary‐adrenal (HPA) and sympathoadrenal axes might play a crucial role. Despite recent reports showing that maternal perinatal undernutrition disturbs chromaffin cells organisation and activity in male rats at weaning, its long‐term effects on adrenal medulla in adult animals are unknown. Using a rat model of maternal perinatal 50% food restriction (FR50) from the second week of gestation until weaning, histochemistry approaches revealed alterations in noradrenergic chromaffin cells aggregation and in cholinergic innervation in the adrenal medulla of 8‐month‐old FR50 rats. Electron microscopy showed that chromaffin cell granules exhibited ultrastructural changes in FR50 rats. These morphological changes were associated with reduced circulating levels and excretion of catecholamines. By contrast, catecholamine plasma levels were significantly increased after a 16 or 72 h of fasting, indicating that the responsiveness of the sympathoadrenal system to food deprivation was accentuated in FR50 adult rats. Among 384 pituitary adenylate cyclase‐activating polypeptide‐sensitive genes, we identified 129 genes (33.6%) that were under expressed (ratio < 0.7) in FR50 animals. A large number of these genes are involved in cytoskeleton remodelling and vesicle trafficking. Taken together, our results show that maternal perinatal undernutrition programmes adrenomedullary function and gene expression in adult male rats. Because catecholamines contribute to metabolic homeostasis, as well as arterial blood pressure regulation, the alterations observed in the adrenal medulla of adult male FR50 rats may participate in the programming of chronic adult diseases.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here