Premium
Novel Potential Regulators of Maternal Adaptations During Lactation: Tuberoinfundibular Peptide 39 and Amylin
Author(s) -
Dobolyi A.
Publication year - 2011
Publication title -
journal of neuroendocrinology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.062
H-Index - 116
eISSN - 1365-2826
pISSN - 0953-8194
DOI - 10.1111/j.1365-2826.2011.02127.x
Subject(s) - medicine , lactation , endocrinology , kisspeptin , preoptic area , amylin , prolactin , hypothalamus , biology , neuropeptide , receptor , hormone , pregnancy , genetics , islet , insulin
Maternal adaptations during lactation include milk synthesis and ejection, the appearance of maternal behaviours, reduced stress response, suppression of the ovarian cycle, and increased food and fluid intake. Several recently identified neuropeptides may participate in these adaptations, and we focus on two of them in the present study: tuberoinfundibular peptide of 39 residues (TIP39) and amylin. TIP39 is the ligand of the parathyroid hormone 2 receptor (PTH2 receptor) is induced in the posterior intralaminar complex of the thalamus (PIL) during lactation. TIP39 neurones in the PIL are activated in mother rats in response to pup exposure and project to preoptic, periventricular, paraventricular, arcuate and dorsomedial regions of the hypothalamus. Furthermore, an antagonist of the PTH2 receptor reduced suckling induced prolactin release. On the basis of their projections, TIP39 neurones might interact with additional neurones involved in maternal adaptations, including kisspeptin neurones participating in the control of gonadotrophin‐releasing hormone function. TIP39 fibres might also interact with amylin, a peptide that we recently identified to appear in the preoptic area of rat dams. On the basis of its distribution, preoptic amylin could play a role in the control of maternal behaviours. We hypothesise that TIP39 neurones mediate the effects of suckling on different hypothalamic systems to affect maternal adaptations.