z-logo
Premium
Expression of Leptin Receptor by Glial Cells of the Nucleus Tractus Solitarius: Possible Involvement in Energy Homeostasis
Author(s) -
Dallaporta M.,
Pecchi E.,
Pio J.,
Jean A.,
Horner K. C.,
Troadec J. D.
Publication year - 2009
Publication title -
journal of neuroendocrinology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.062
H-Index - 116
eISSN - 1365-2826
pISSN - 0953-8194
DOI - 10.1111/j.1365-2826.2008.01799.x
Subject(s) - area postrema , leptin , medicine , endocrinology , hypothalamus , energy homeostasis , leptin receptor , brainstem , solitary nucleus , biology , receptor , dorsal motor nucleus , glial fibrillary acidic protein , nucleus , microbiology and biotechnology , central nervous system , vagus nerve , immunohistochemistry , stimulation , obesity
Leptin, an adipocyte‐derived hormone, regulates food intake and body weight by acting principally on the hypothalamus, which displays the highest expression of leptin receptor (Ob‐R). Nevertheless, other regions of the brain express Ob‐R and constitute leptin’s target sites. The dorsal vagal complex (DVC), an integrative centre of autonomic functions located in the caudal brainstem, is one of these structures. Leptin, by acting through the DVC, affects autonomic and neuroendocrine functions, such as control of food intake and gastric motility. In the present study, we observed Ob‐R labelling within the DVC in cells that correspond to neuronal cell bodies. We showed for the first time Ob‐R expression in a subpopulation of glial fibrillary acid protein positive cells located at the border between the area postrema and the nucleus tractus solitarius (NTS). These glial cells exhibit an atypical morphology consisting of unbranched processes that radiate rostro‐caudally from the fourth ventricle wall. In vitro , the glial cells exhibited both long and short Ob‐R expression with a preferential expression of the Ob‐Ra and‐f isoforms. Interestingly, using i.v and i.c.v. injection of the fluorescent tracer hydroxystilbamidine, we provided evidence that these cells may constitute a diffusion barrier which might regulate entry of molecules into the NTS. Finally, modulation of energy status, by acute or chronic reduction of food intake, modulated especially the short Ob‐R isofoms in the DVC. In the light of these results, we hypothesise that Ob‐R positive glial cells of the DVC participate in the transport of leptin into the brainstem and thus contribute to regulation of energy homeostasis.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here