z-logo
Premium
Bistability with Hysteresis in the Activity of Vasopressin Cells
Author(s) -
Sabatier N.,
Leng G.
Publication year - 2007
Publication title -
journal of neuroendocrinology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.062
H-Index - 116
eISSN - 1365-2826
pISSN - 0953-8194
DOI - 10.1111/j.1365-2826.2006.01509.x
Subject(s) - vasopressin , neuroscience , lamina terminalis , population , bistability , inhibitory postsynaptic potential , excitatory postsynaptic potential , stimulation , biology , electrophysiology , chemistry , medicine , hypothalamus , physics , endocrinology , environmental health , quantum mechanics
Magnocellular vasopressin neurones generate distinctive ‘phasic’ patterns of electrical activity during which periods of spiking activity (bursts) alternate with periods of no spikes or occasional spikes. The mechanisms of burst termination in vivo are still not clearly understood. We recorded from single phasic vasopressin cells in vivo and here we show that burst terminations in some phasic cells is preceded by transient increases in activity, consistent with bursts ending as a result of activity‐dependent inhibition. We show that extrinsically imposed increases in activity, evoked by brief stimulation of the organum vasculosum of the lamina terminalis, can either trigger bursts if given when a cell is silent, or stop bursts if given when a cell is active. Thus, the magnocellular vasopressin system is a population of independent bistable oscillators. The population as a whole is insensitive to transient changes in input level, whether these are excitatory or inhibitory. The vasopressin cell population thus acts like a ‘low‐pass filter’; although brief large changes in input rate have little overall effect, the population responds very effectively to small, sustained changes in input rate by evolving a pattern of discharge activity that efficiently maintains secretion. We note that these filtering characteristics are the opposite of the filtering characteristics that are typically associated with neurones.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here