Premium
Microwaves and tea: new tools to process plant tissue for transmission electron microscopy
Author(s) -
CARPENTIER ANAÏS,
ABREU SUSANA,
TRICHET MICHAEL,
SATIATJEUNEMAITRE BÉATRICE
Publication year - 2012
Publication title -
journal of microscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.569
H-Index - 111
eISSN - 1365-2818
pISSN - 0022-2720
DOI - 10.1111/j.1365-2818.2012.03626.x
Subject(s) - uranyl acetate , uranyl , transmission electron microscopy , ultrastructure , polyphenol , staining , chemistry , materials science , nanotechnology , biomedical engineering , nuclear chemistry , biochemistry , medicine , botany , biology , organic chemistry , pathology , ion , antioxidant
Summary Optimizing sample processing, reducing the duration of the preparation of specimen, and adjusting procedures to adhere to new health and safety regulations, are the current challenges of plant electron microscopists. To address these issues, plant processing protocols for TEM, combining the use of polyphenolic compounds as substitute for uranyl acetate with microwave technology are being developed. In the present work, we optimized microwave‐assisted processing of different types of plant tissue for ultrastuctural and immunocytochemical studies. We also explored Oolong tea extract as alternative for uranyl acetate for the staining of plant samples. We obtained excellent preservation of cell ultrastructure when samples were embedded in epoxy resin, and of cell antigenicity, when embedded in LR‐White resin. Furthermore, Oolong tea extract successfully replaced uranyl acetate as a counterstain on ultrathin sections, and for in block staining. These novel protocols reduce the time spent at the bench, and improve safety conditions for the investigator. The preservation of the cell components when following these approaches is of high quality. Altogether, they offer significant simplification of the procedures required for electron microscopy of plant ultrastructure.