Premium
Stereology of isolated objects with the invariator
Author(s) -
CRUZORIVE L.M.,
RAMOSHERRERA M.L.,
ARTACHOPÉRULA E.
Publication year - 2010
Publication title -
journal of microscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.569
H-Index - 111
eISSN - 1365-2818
pISSN - 0022-2720
DOI - 10.1111/j.1365-2818.2010.03387.x
Subject(s) - isotropy , stereology , estimator , ball (mathematics) , invariant (physics) , population , mathematics , geometry , computer science , physics , statistics , optics , biology , demography , sociology , mathematical physics , endocrinology
Summary The invariator is a new stereological design to generate motion invariant test lines in three dimensions on an isotropic plane through a fixed point. The theory has been published recently. The purpose of this paper is to illustrate the application of the invariator on a group of rat brains to estimate brain volume and external surface area. Each brain was first split into its two hemispheres and then embedded into a ball filled with agar following a configuration named the antithetic isector, with the idea of reducing the error variance. After rolling the ball at random it was scanned by magnetic resonance imaging into a stack of parallel systematic sections: this is the isotropic Cavalieri design which, combined with the antithetic isector idea, proves to be very accurate. The invariator used only an equatorial section of the ball, and in the present case the coefficient of error of the volume and surface area estimators of an individual brain was about 30%. As it is design unbiased, the invariator may prove its strength mainly to estimate population means.