z-logo
Premium
First combined electron backscatter diffraction and transmission electron microscopy study of grain boundary structure of deformed quartzite
Author(s) -
SHIGEMATSU N.,
PRIOR D. J.,
WHEELER J.
Publication year - 2006
Publication title -
journal of microscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.569
H-Index - 111
eISSN - 1365-2818
pISSN - 0022-2720
DOI - 10.1111/j.1365-2818.2006.01697.x
Subject(s) - misorientation , grain boundary , electron backscatter diffraction , transmission electron microscopy , dislocation , materials science , electron diffraction , condensed matter physics , crystallography , optics , diffraction , geometry , chemistry , physics , microstructure , mathematics
Summary The structures of boundaries in a deformed and dynamically recovered and recrystallized quartz polycrystal (mylonite) were characterized by transmission electron microscopy, after the misorientation angles across the same grain boundaries had been analysed using electron backscatter diffraction in a scanning electron microscope. In this new approach, a specific sample area is mapped with electron backscatter diffraction, and the mapped area is then attached to a foil, and by the ion beam thinned for transmission electron microscopy analysis. Dislocations in grain boundaries were recognized as periodic and parallel fringes. The fringes associated with dislocations are observed in boundaries with misorientations less than 9°, whereas such fringes cannot be seen in the boundaries with misorientations larger than 17°. Some boundaries with misorientations between 9° and 17° generally have no structures associated with dislocation. One segment of a boundary with a misorientation of 13.5° has structures associated with dislocations. It is likely that the transition from low‐angle to high‐angle boundaries occurs at misorientations ranging from approximately 9° to 14°. Change in the grain boundary structure presumably influences the mobility of the boundaries. In the studied deformed quartz vein, a relative dearth of boundaries between misorientation angles of θ = 2° and θ = 15° has previously been reported, and high‐angle boundaries form cusps where they intersect low‐angle boundaries, suggesting substantial mobility of high‐angle boundaries.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here