z-logo
Premium
Atomic force microscopy studies of conditioner thickness distribution and binding interactions on the hair surface
Author(s) -
CHEN N.,
BHUSHAN B.
Publication year - 2006
Publication title -
journal of microscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.569
H-Index - 111
eISSN - 1365-2818
pISSN - 0022-2720
DOI - 10.1111/j.1365-2818.2006.01553.x
Subject(s) - modulus , atomic force microscopy , elastic modulus , materials science , surface (topology) , molecule , hair care , composite material , chemistry , nanotechnology , geometry , polymer science , mathematics , organic chemistry
Summary The way in which common hair care products, such as conditioner, deposit onto and change hair properties is of interest in beauty care science, as these properties are closely tied to product performance. The binding interaction between conditioner and the hair surface is one of the important factors in determining the conditioner thickness distribution and consequently the proper functions of conditioner. In this study, atomic force microscopy was used to obtain the local conditioner thickness distribution, adhesive forces and effective Young's modulus mapping of various hair surfaces. The conditioner thickness was extracted by measuring the forces on the atomic force microscopy tip as it approached, contacted and pushed through the conditioner layer. The effective Young's moduli of various hair surfaces were calculated from the force distance curves using Hertz analysis. The intrinsic binding interactions between different silicones and the hair surface on the microscopic scale, as well as their effect on the effective Young's modulus of the hair, are also discussed. It was found that the effective Young's modulus of the hair is strongly affected by the binding of conditioner molecules on the hair surface.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here