Premium
Bitumen morphologies by phase‐detection atomic force microscopy
Author(s) -
MASSON JF.,
LEBLOND V.,
MARGESON J.
Publication year - 2006
Publication title -
journal of microscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.569
H-Index - 111
eISSN - 1365-2818
pISSN - 0022-2720
DOI - 10.1111/j.1365-2818.2006.01540.x
Subject(s) - asphaltene , atomic force microscopy , microstructure , asphalt , microscopy , chemistry , morphology (biology) , phase (matter) , nickel , vanadium , crystallography , chemical physics , materials science , nanotechnology , composite material , organic chemistry , geology , optics , physics , paleontology
Summary Bitumen is a complex mixture of hydrocarbons for which microstructural knowledge is incomplete. In an effort to detail this microstructure, 13 bitumens were analysed by phase‐detection atomic force microscopy. Based on morphology, the bitumens could be classified into three distinct groups. One group showed fine domains down to 0.1 µm, another showed domains of about 1 µm, and a third group showed up to four different domains or phases of different sizes and shapes. No correlation was found between the atomic force microscopy morphology and the composition based on asphaltenes, polar aromatics, naphthene aromatics and saturates. A high correlation was found between the area of the ‘bee‐like’ structures and the vanadium and nickel content in bitumen, and between the atomic force microscopy groups and the average size of molecular planes made of fused aromatics. The morphology and the molecular arrangements in bitumen thus appear to be partly governed by the molecular planes and the polarity defined by metallic cations.