Premium
Microstructure of pharyngeal tooth enameloid in the parrotfish Scarus rivulatus (Pisces: Scaridae)
Author(s) -
CARR A.,
KEMP A.,
TIBBETTS I.,
TRUSS R.,
DRENNAN J.
Publication year - 2006
Publication title -
journal of microscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.569
H-Index - 111
eISSN - 1365-2818
pISSN - 0022-2720
DOI - 10.1111/j.1365-2818.2006.01526.x
Subject(s) - parrotfish , anatomy , mylonite , biology , fish <actinopterygii> , paleontology , tectonics , fishery , shear zone
Summary The microstructure of parrotfish pharyngeal teeth was examined using scanning electron microscopy to infer possible mechanical properties of the dentition with respect to their function. Parrotfish tooth enameloid is formed from fluorapatite crystals grouped into bundles. In the upper and lower pharyngeal jaw, the majority of the crystal bundles are orientated either perpendicularly or vertically to the enameloid surface. The only exception is in the trailing apical enameloid in which the majority of bundles are orientated perpendicularly or horizontally to the trailing surface. A distinct transition occurs through the middle of the apex between the leading and trailing enameloid in teeth of the lower pharyngeal jaw. This transition appears less distinct in the teeth of the upper pharyngeal jaw. Enameloid microstructure indicates that shear forces predominate at the apex of the teeth. In the remainder of the enameloid, the microstructure indicates that wear is predominant, and the shear forces are of less importance.