z-logo
Premium
Forest ecosystems of an Arizona Pinus ponderosa landscape: multifactor classification and implications for ecological restoration
Author(s) -
Abella Scott R.,
Covington W. Wallace
Publication year - 2006
Publication title -
journal of biogeography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.7
H-Index - 158
eISSN - 1365-2699
pISSN - 0305-0270
DOI - 10.1111/j.1365-2699.2006.01513.x
Subject(s) - ecosystem , ecology , forest ecology , geography , ecological succession , vegetation (pathology) , plant community , ecosystem services , environmental science , biology , medicine , pathology
Aim  We developed an ecosystem classification within a 110,000‐ha Arizona Pinus ponderosa P. & C. Lawson (ponderosa pine) landscape to support ecological restoration of these forests. Specific objectives included identifying key environmental variables constraining ecosystem distribution and comparing plant species composition, richness and tree growth among ecosystems. Location  The Coconino National Forest and the Northern Arizona University Centennial Forest, in northern Arizona, USA. Methods  We sampled geomorphology, soils and vegetation on 66 0.05‐ha plots in open stands containing trees of pre‐settlement ( c . 1875) origin, and on 26 plots in dense post‐settlement stands. Using cluster analysis and ordination of vegetation and environment matrices, we classified plots into ecosystem types internally similar in environmental and vegetational characteristics. Results  We identified 10 ecosystem types, ranging from dry, black cinders/ Phacelia ecosystems to moist aspen/ Lathyrus ecosystems. Texture, organic carbon and other soil properties reflecting the effects of parent materials structured ecosystem distribution across the landscape, and geomorphology was locally important. Plant species composition was ecosystem‐specific, with C 3 Festuca arizonica Vasey (Arizona fescue), for instance, abundant in mesic basalt/ Festuca ecosystems. Mean P. ponderosa diameter increments ranged from 2.3–4.3 mm year −1 across ecosystems in stands of pre‐settlement origin, and the ecosystem classification was robust in dense post‐settlement stands. Main conclusions  Several lines of evidence suggest that although species composition may have been altered since settlement, the same basic ecosystems occurred on this landscape in pre‐settlement forests, providing reference information for ecological restoration. Red cinders/ Bahia ecosystems were rare historically and > 30% of their area has been burned by crown fires since 1950, indicating that priority could be given to restoring this ecosystem's remaining mapping units. Ecosystem classifications may be useful as data layers in gap analyses to identify restoration and conservation priorities. Ecosystem turnover occurs at broad extents on this landscape, and restoration must accordingly operate across large areas to encompass ecosystem diversity. By incorporating factors driving ecosystem composition, this ecosystem classification represents a framework for estimating spatial variation in ecological properties, such as species diversity, relevant to ecological restoration.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here