Premium
Effect of 2,4‐dinitrotoluene on the anaerobic bacterial community in marine sediment
Author(s) -
Yang H.,
Zhao J.S.,
Hawari J.
Publication year - 2009
Publication title -
journal of applied microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.889
H-Index - 156
eISSN - 1365-2672
pISSN - 1364-5072
DOI - 10.1111/j.1365-2672.2009.04366.x
Subject(s) - anaerobic exercise , sediment , microbiology and biotechnology , environmental chemistry , biology , environmental science , ecology , chemistry , physiology , paleontology
Aims: To study the impact of added 2,4‐dinitrotoluene (DNT) on the anaerobic bacterial community in marine sediment collected from an unexploded ordnance dumping site in Halifax Harbour. Methods and Results: Marine sediment was spiked with 2,4‐DNT and incubated under anaerobic conditions in the presence and absence of lactate. Indigenous bacteria in the sediment removed 2,4‐DNT with subsequent formation of its mono‐ and diamino‐derivatives under both conditions. PCR–DGGE and nucleotide sequencing were used to monitor the change in the bacterial population in sediment caused by the presence of 2,4‐DNT. The results showed that denaturing gradient gel electrophoresis banding patterns of sediment microcosms treated with 2,4‐DNT were different from controls that did not receive 2,4‐DNT. Bacteroidetes, Firmicutes and δ‐Proteobacteria were present in sediment incubated in the absence of 2,4‐DNT. However, several γ‐Proteobacteria became dominant in sediment in the presence of 2,4‐DNT, two of which were 99% similar to Shewanella canadensis and Shewanella sediminis . In the presence of both 2,4‐DNT and lactate, two additional δ‐Proteobacteria were enriched, one closely related (98% similarity) to Desulfofrigus fragile and the other affiliated (96% similarity) to Desulfovibrio sp. In contrast, none of the above four Proteobacteria were enriched in sediment incubated with lactate alone. Conclusions: Presence of 2,4‐DNT led to a significant change in bacterial population of marine sediment with the enrichment of several γ‐ and δ‐Proteobacteria. Significance and Impact of the Study: Our results provided the first evidence on the impact of the pollutant 2,4‐DNT on the indigenous bacterial community in marine sediment, and provided an insight into the composition of bacterial community that degrade 2,4‐DNT.