z-logo
Premium
Relatedness of Pseudomonas syringae pv. tomato, Pseudomonas syringae pv. maculicola and Pseudomonas syringae pv. antirrhini
Author(s) -
Hendson M.,
Hildebrand D.C.,
Schroth M.N.
Publication year - 1992
Publication title -
journal of applied bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.889
H-Index - 156
eISSN - 1365-2672
pISSN - 0021-8847
DOI - 10.1111/j.1365-2672.1992.tb05005.x
Subject(s) - pseudomonas syringae , restriction fragment length polymorphism , biology , genetics , microbiology and biotechnology , gene , genotype
The relationships among strains of Pseudomonas syringae pv. tomato, Ps. syr. antirrhini, Ps. syr. maculicola, Ps. syr. apii and a strain isolated from squash were examined by restriction fragment length polymorphism (RFLP) patterns, nutritional characteristics, host of origin and host ranges. All strains tested except for Ps. syr. maculicola 4326 isolated from radish ( Raphanus sativus L.) constitute a closely related group. No polymorphism was seen among strains probed with the 5.7 and 2.3 kb Eco RI fragments which lie adjacent to the hrp cluster of Ps. syr. tomato and the 8.6 kb Eco RI insert of pBG2, a plasmid carrying the β‐glucosidase gene(s). All strains tested had overlapping host ranges. In contrast to this, comparison of strains by RFLP patterns of sequences homologous to the 4.5 kb Hind III fragment of pRut2 and nutritional properties distinguished four groups. Group 1, consisting of strains of pathovars maculicola, tomato and apii , had similar RFLP patterns and used homoserine but not sorbitol as carbon sources. Group 2, consisting of strains of pathovars maculicola and tomato , differed from Group 1 in RFLP patterns and did not use either homoserine or sorbitol. Group 3 was similar to Group 2 in RFLP patterns but utilized homoserine and sorbitol. This group included strains of the pathovars tomato and antirrhini , and a strain isolated from squash. Group 4, a single strain of Ps. syr. maculicola isolated from radish, had unique RFLP patterns and resembled Group 3 nutritionally. The evolutionary relationships of these strains are discussed.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here