z-logo
Premium
Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies
Author(s) -
Radchuk Viktoriia,
Turlure Camille,
Schtickzelle Nicolas
Publication year - 2013
Publication title -
journal of animal ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.134
H-Index - 157
eISSN - 1365-2656
pISSN - 0021-8790
DOI - 10.1111/j.1365-2656.2012.02029.x
Subject(s) - overwintering , ectotherm , climate change , voltinism , population , pupa , ecology , population viability analysis , biology , habitat , diapause , vital rates , global warming , baseline (sea) , butterfly , population growth , larva , endangered species , demography , fishery , sociology
Summary As ectothermic organisms, butterflies have widely been used as models to explore the predicted impacts of climate change. However, most studies explore only one life stage; to our best knowledge, none have integrated the impact of temperature on the vital rates of all life stages for a species of conservation concern. Besides, most population viability analysis models for butterflies are based on yearly population growth rate, precluding the implementation and assessment of important climate change scenarios, where climate change occurs mainly, or differently, during some seasons. Here, we used a combination of laboratory and field experiments to quantify the impact of temperature on all life stages of a vulnerable glacial relict butterfly. Next, we integrated these impacts into an overall population response using a deterministic periodic matrix model and explored the impact of several climate change scenarios. Temperature positively affected egg, pre‐diapause larva and pupal survival, and the number of eggs laid by a female; only the survival of overwintering larva was negatively affected by an increase in temperature. Despite the positive impact of warming on many life stages, population viability was reduced under all scenarios, with predictions of much shorter times to extinction than under the baseline (current temperature situation) scenario. Indeed, model predictions were the most sensitive to changes in survival of overwintering larva, the only stage negatively affected by warming. A proper consideration of every stage of the life cycle is important when designing conservation guidelines in the light of climate change. This is in line with the resource‐based habitat view, which explicitly refers to the habitat as a collection of resources needed for all life stages of the species. We, therefore, encourage adopting a resource‐based habitat view for population viability analysis and development of conservation guidelines for butterflies, and more generally, other organisms. Life stages that are cryptic or difficult to study should not be forsaken as they may be key determinants in the overall response to climate change, as we found with overwintering Boloria eunomia larvae.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here