Premium
Growth or Survival of Listeria monocytogenes in Ready‐to‐Eat Meat Products and Combination Deli Salads During Refrigerated Storage
Author(s) -
Burnett Scott L.,
Mertz Erin L.,
Bennie Barbara,
Ford Thomas,
Starobin Anna
Publication year - 2005
Publication title -
journal of food science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 150
eISSN - 1750-3841
pISSN - 0022-1147
DOI - 10.1111/j.1365-2621.2005.tb11451.x
Subject(s) - listeria monocytogenes , shrimp , food science , cold storage , dried fish , food preservation , shelf life , fish <actinopterygii> , bacterial growth , chemistry , smoked fish , vacuum packing , biology , fishery , bacteria , horticulture , genetics
ABBSTRACT Growth or survival of Listeria monocytogenes in cold‐smoked salmon; sliced, cooked ham; sliced, roasted turkey; shrimp salad; and coleslaw obtained at retail supermarkets stored at 5 °C, 7 °C, or 10 °C (41 °F, 45 °F, or 50 °F, respectively) for up to 14 d was evaluated. Cold‐smoked salmon, ham, and turkey were obtained in case‐ready, vacuum packages. All food products were stored aerobically to reflect additional handling within the retail supermarket. Cold‐smoked salmon, ham, and turkey supported the growth of L. monocytogenes at all 3 storage temperatures. Fitted growth curves of initial populations (about 3 log 10 colony‐forming units [CFU]/g) in cold‐smoked salmon, ham, and turkey stored at 5 °C achieved maximal growth rates of 0.29, 0.45, and 0.42 log 10 CFU/g growth per day, respectively. Storage at 10 °C increased the estimated maximal growth rate of the pathogen by 0.56 to 1.08 log 10 CFU/ g growth per day compared with storage at 5 °C. A decline in populations of L. monocytogenes was observed in shrimp salad and coleslaw, and the rate of decline was influenced by storage temperature. Retention of viability was higher in shrimp salad than in coleslaw, where populations fell 1.2, 1.8, and 2.5 log 10 CFU/g at 5 °C, 7 °C, and 10 °C, respectively, after 14 d of storage. Inability of shrimp salad and coleslaw to support the growth of L. monocytogenes may be attributed to the acidic pH (4.8 and 4.5, respectively) of the formulations used in this study. Results show that the behavior of L. monocytogenes in potentially hazardous ready‐to‐eat foods is dependent upon the composition of individual food products as well as storage temperature.