Premium
Effect of Heat‐Moisture Treatment and Acid Modification on Rheological, Textural, and Differential Scanning Calorimetry Characteristics of Sweetpotato Starch
Author(s) -
Singh Sukhcharn,
Raina C.S.,
Bawa A.S.,
Saxena Dharmesh C.
Publication year - 2005
Publication title -
journal of food science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 150
eISSN - 1750-3841
pISSN - 0022-1147
DOI - 10.1111/j.1365-2621.2005.tb11441.x
Subject(s) - differential scanning calorimetry , rheology , moisture , starch , food science , differential effects , chemistry , materials science , chemical engineering , composite material , biology , thermodynamics , physics , engineering , endocrinology
Sweetpotato starches were characterized to understand the changes upon modification by acid and heat‐moisture treatment (HMT) in the rheological, differential scanning calorimetry (DSC), and textural characteristics of starch isolated from the sweetpotato variety PSP‐21 and to compare these findings with those of commercially available arrowroot starch. The native sweetpotato starch had a Type A pasting profile characterized by a high peak viscosity (PV) (741.5 rapid viscoanalyzer unit [rvu]), with a high breakdown (378.8 rvu) and low cold paste viscosity (CPV) (417.6 rvu). After HMT, there was a marked decrease in the PV (639.1), a very slight breakdown (113.5 rvu) and an increase in CPV (759.5 rvu), more like a Type C pasting profile. However, acid modification did not notably change the pasting profile of native sweetpotato starch. The DSC characteristics were also affected significantly after modifications. The gelatinization temperature parameter to onset (T o ) decreased significantly after HMT and acid modification. The gelatinization enthalpy decreased during HMT from 15.98 to 14.42 J/g. The gel strength of acid‐modified starch was the highest compared with that of HMT and native sweetpotato and arrowroot starches.