z-logo
Premium
Effect of Relative Humidity on the Oxidative Stability of Microencapsulated Sea Buckthorn Seed Oil
Author(s) -
Partanen Riitta,
Hakala Piia,
Sjövall Olli,
Kallio Heikki,
Forssell Pirkko
Publication year - 2005
Publication title -
journal of food science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 150
eISSN - 1750-3841
pISSN - 0022-1147
DOI - 10.1111/j.1365-2621.2005.tb09035.x
Subject(s) - maltodextrin , relative humidity , chemistry , caking , peroxide value , spray drying , soybean oil , emulsion , shelf life , matrix (chemical analysis) , gum arabic , starch , peroxide , food science , chromatography , organic chemistry , physics , thermodynamics
The effect of relative humidity (RH) (20 °C: RH 11%, 54%) on oxidative stability microencapsulated sea buckthorn seed oil was studied using bulk oil as a reference. Microcapsules were prepared by spray‐drying using maltodextrin‐gum arabic (MD/GA) and corn starch sodium octenyl succinate derivate (HiCap) as the wall materials. The influence of the physical state of the wall material was also evaluated. Under dry conditions, the microencapsulated oils were most stable, but the oxidation of the bulk oil was accelerated. At 20 °C and at RH 11%, the peroxide value of the bulk oil exceeded 20 meq/kg within 1 wk. Microencapsulation prolonged the shelf‐life of the oil from 1 wk to 2 mo at 20 °C, when the encapsulating matrix was in glassy state. In conditions in which the HiCap matrix was in a rubbery state (RH 54%, 20 °C), the oxidation proceeded very quickly, reaching a peroxide value of 20 meq/kg just after 1 wk. Caking and collapse of the microcapsule powder were observed in the rubbery state. At accelerated conditions (50 °C: RH 11%, 30%, 45%), the oxidation was noticeably fast, not only in the bulk oil but also in the MD/GA matrix, even in the glassy state. The behavior in the HiCap matrix was more complex as the amount of peroxides started to decrease in time. This was assigned to the structural collapse in HiCap microcapsules. The behavior of the microencapsulated oils under accelerated conditions did not correlate with their behavior at 20 °C.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here