Premium
Classification of Potato Chips Using Pattern Recognition
Author(s) -
Edreschi F. P,
Mery D.,
Mendoza F.,
Aguilera J.M.
Publication year - 2004
Publication title -
journal of food science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 150
eISSN - 1750-3841
pISSN - 0022-1147
DOI - 10.1111/j.1365-2621.2004.tb10996.x
Subject(s) - pattern recognition (psychology) , preprocessor , artificial intelligence , segmentation , classifier (uml) , feature extraction , computer science , mathematics
An approach to classify potato chips using pattern recognition from color digital images consists of 5 steps: (1) image acquisition, (2) preprocessing, (3) segmentation, (4) feature extraction, and (5) classification. Ten chips prepared for each of the following 6 conditions were examined: 2 pretreatments (blanched and unblanched) at 3 temperatures (120°C, 150°C, and 180°C). More than 1500 features were extracted from each of the 60 images. Finally, 11 features were selected according to their classification attributes. Seven different classification cases (for example, classification of the 6 classes or distinction between blanched and unblanched samples) were analyzed using the selected features. Although samples were highly heterogeneous, using a simple classifier and a small number of features, it was possible to obtain a good performance value in all cases: classification of the 6 classes was in the confidence interval between 78% and 89% with a probability of 95%.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom