Premium
Rigidity and Viscosity Changes of Croaker Actomyosin During Thermal Gelation
Author(s) -
WU M. C.,
LANIER T. C.,
HAMANN D. D.
Publication year - 1985
Publication title -
journal of food science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 150
eISSN - 1750-3841
pISSN - 0022-1147
DOI - 10.1111/j.1365-2621.1985.tb13267.x
Subject(s) - rigidity (electromagnetism) , rheology , viscometer , chemistry , viscosity , thermal , fish <actinopterygii> , atmospheric temperature range , thermodynamics , materials science , composite material , fishery , biology , physics
Two types of thermal scanning rigidity monitors (TSRM) were developed which are nondestructive and capable of monitoring rigidity or viscosity changes during heating of proteins over a wide range of concentrations. Thermal transitions which occur during gelation of croaker actomyosin were studied by these TSRM devices and the Brookfield viscometer during constant rate heating (1°C/min). Gelation of actomyosin occurred only at protein concentrations above 5.5% under these conditions. In plots of rigidity versus temperature, three transitions were observed during gelation, occurring near 38°C 46°C and 60°C. At lower concentrations, only one peak was observed, occurring near 36°C. A relationship between the 36–38°C transition in rheological properties and the high temperature “setting” phenomenon of fish proteins is postulated.