Premium
Liver sinusoidal endothelial cells and acute non‐oxidative hepatic injury induced by Pseudomonas aeruginosa pyocyanin
Author(s) -
Cheluvappa Rajkumar,
Cogger Victoria C.,
Kwun Sun Young,
O’Reilly Jennifer N.,
Le Couteur David G.,
Hilmer Sarah N.
Publication year - 2008
Publication title -
international journal of experimental pathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.671
H-Index - 72
eISSN - 1365-2613
pISSN - 0959-9673
DOI - 10.1111/j.1365-2613.2008.00602.x
Subject(s) - pyocyanin , pseudomonas aeruginosa , microbiology and biotechnology , oxidative phosphorylation , chemistry , medicine , biology , biochemistry , bacteria , virulence , gene , quorum sensing , genetics
Summary The liver sinusoidal endothelial cell (LSEC) is damaged by many toxins, including oxidants and bacterial toxins. Any effect on LSECs of the Pseudomonas aeruginosa virulence factor, pyocyanin, may be relevant for systemic pseudomonal infections and liver transplantation. In this study, the effects of pyocyanin on in vivo rat livers and isolated LSECs were assessed using electron microscopy, immunohistochemistry and biochemistry. In particular, the effect on fenestrations, a crucial morphological aspect of LSECs was assessed. Pyocyanin treatment induced a dose‐dependent reduction in fenestrations in isolated LSECs. In the intact liver, intraportal injection of pyocyanin (11.9 μM in blood) was associated with a reduction in endothelial porosity from 3.4 ± 0.2% ( n = 5) to 1.3 ± 0.1% ( n = 7) within 30 min. There were decreases in both diameter and frequency of fenestrations in the intact endothelium. There was also a decrease in endothelial thickness from 175.8 ± 5.8 to 156.5 ± 4.0 nm, an endothelial pathology finding previously unreported. Hepatocyte ultrastructure, liver function tests and immunohistochemical markers of oxidative stress (3‐nitrotyrosine and malondialdehyde) were not affected. Pyocyanin induces significant ultrastructural changes in the LSEC in the absence of immunohistochemical evidence of oxidative stress or hepatocyte injury pointing to a novel mechanism for pyocyanin pathogenesis.