Premium
Nanoparticle tracking analysis monitors microvesicle and exosome secretion from immune cells
Author(s) -
Soo Chin Y.,
Song Yaqiong,
Zheng Ying,
Campbell Elaine C.,
Riches Andrew C.,
GunnMoore Frank,
Powis Simon J.
Publication year - 2012
Publication title -
immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.297
H-Index - 133
eISSN - 1365-2567
pISSN - 0019-2805
DOI - 10.1111/j.1365-2567.2012.03569.x
Subject(s) - microvesicle , microvesicles , exosome , nanoparticle tracking analysis , chemistry , immune system , microbiology and biotechnology , jurkat cells , biology , biochemistry , t cell , immunology , microrna , gene
Summary Nanoparticle tracking analysis permits the determination of both the size distribution and relative concentration of microvesicles, including exosomes, in the supernatants of cultured cells and biological fluids. We have studied the release of microvesicles from the human lymphoblastoid T‐cell lines Jurkat and CEM. Unstimulated, both cell lines release microvesicles in the size range 70–90 nm, which can be depleted from the supernatant by ultracentrifugation at 100 000 g , and by anti‐CD45 magnetic beads, and which by immunoblotting also contain the exosome‐associated proteins Alix and Tsg101. Incubation with known potentiators of exosome release, the ionophores monensin and A23187, resulted in a significant increase in microvesicle release that was both time and concentration dependent. Mass spectrometric analysis of proteins isolated from ultracentrifuged supernatants of A23187‐treated cells revealed the presence of exosome‐associated proteins including heat‐shock protein 90, tubulin, elongation factor α1, actin and glyceraldehyde 3‐phosphate dehydrogenase. Additionally, treatment of peripheral blood monocyte‐derived dendritic cells with bacterial lipopolysaccharide displayed an increase in secreted microvesicles. Consequently, nanoparticle tracking analysis can be effectively applied to monitor microvesicle release from cells of the immune system.