z-logo
Premium
Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for A ustralian bread wheat ( T riticum aestivium ) varieties?
Author(s) -
Zheng Bangyou,
Chenu Karine,
Fernanda Dreccer M.,
Chapman Scott C.
Publication year - 2012
Publication title -
global change biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.146
H-Index - 255
eISSN - 1365-2486
pISSN - 1354-1013
DOI - 10.1111/j.1365-2486.2012.02724.x
Subject(s) - frost (temperature) , sowing , growing season , climate change , precipitation , environmental science , agronomy , global warming , geography , biology , ecology , meteorology
Abstract Extreme climate, especially temperature, can severely reduce wheat yield. As global warming has already begun to increase mean temperature and the occurrence of extreme temperatures, it has become urgent to accelerate the 5–20 year process of breeding for new wheat varieties, to adapt to future climate. We analyzed the patterns of frost and heat events across the Australian wheatbelt based on 50 years of historical records (1960–2009) for 2864 weather stations. Flowering dates of three contrasting‐maturity wheat varieties were simulated for a wide range of sowing dates in 22 locations for ‘current’ climate (1960–2009) and eight future scenarios (high and low CO 2 emission, dry and wet precipitation scenarios, in 2030 and 2050). The results highlighted the substantial spatial variability of frost and heat events across the Australian wheatbelt in current and future climates. As both ‘last frost’ and ‘first heat’ events would occur earlier in the season, the ‘target’ sowing and flowering windows (defined as risk less than 10% for frost (<0 °C) and less than 30% for heat (>35 °C) around flowering) would be shifted earlier by up to 2 and 1 month(s), respectively, in 2050. A short‐season variety would require a shift in target sowing window 2‐fold greater than long‐ and medium‐season varieties by 2050 (8 vs. 4 days on average across locations and scenarios, respectively), but would suffer a lesser decrease in the length of the vegetative period (4 vs. 7 days). Overall, warmer winters would shorten the wheat season by up to 6 weeks, especially during preflowering. This faster crop cycle is associated with a reduced time for resource acquisition, and potential yield loss. As far as favourable rain and modern equipment would allow, early sowing and longer season varieties (i.e. in current climate) would be the best strategies to adapt to future climates.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here