z-logo
Premium
The role of climate, habitat, and species co‐occurrence as drivers of change in small mammal distributions over the past century
Author(s) -
RUBIDGE EMILY M.,
MONAHAN WILLIAM B.,
PARRA JUAN L.,
CAMERON SUSAN E.,
BRASHARES JUSTIN S.
Publication year - 2011
Publication title -
global change biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.146
H-Index - 255
eISSN - 1365-2486
pISSN - 1354-1013
DOI - 10.1111/j.1365-2486.2010.02297.x
Subject(s) - climate change , species distribution , ecology , habitat , environmental niche modelling , environmental science , multivariate statistics , geography , vegetation (pathology) , biology , ecological niche , statistics , medicine , mathematics , pathology
Species distribution models are commonly used to predict species responses to climate change. However, their usefulness in conservation planning and policy is controversial because they are difficult to validate across time and space. Here we capitalize on small mammal surveys repeated over a century in Yosemite National Park, USA, to assess accuracy of model predictions. Historical (1900–1940) climate, vegetation, and species occurrence data were used to develop single‐ and multi‐species multivariate adaptive regression spline distribution models for three species of chipmunk. Models were projected onto the current (1980–2007) environmental surface and then tested against modern field resurveys of each species. We evaluated models both within and between time periods and found that even with the inclusion of biotic predictors, climate alone is the dominant predictor explaining the distribution of the study species within a time period. However, climate was not consistently an adequate predictor of the distributional change observed in all three species across time. For two of the three species, climate alone or climate and vegetation models showed good predictive performance across time. The stability of the distribution from the past to present observed in the third species, however, was not predicted by our modeling approach. Our results demonstrate that correlative distribution models are useful in understanding species' potential responses to environmental change, but also show how changes in species‐environment correlations through time can limit the predictive performance of models.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here