z-logo
Premium
Uncertainties in the 20th century carbon budget associated with land use change
Author(s) -
ARORA V. K.,
BOER G. J.
Publication year - 2010
Publication title -
global change biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.146
H-Index - 255
eISSN - 1365-2486
pISSN - 1354-1013
DOI - 10.1111/j.1365-2486.2010.02202.x
Subject(s) - environmental science , land cover , pasture , greenhouse gas , climate change , atmospheric sciences , land use , carbon cycle , carbon sequestration , biomass (ecology) , range (aeronautics) , land use, land use change and forestry , carbon fibers , physical geography , climatology , hydrology (agriculture) , carbon dioxide , forestry , geography , geology , ecology , ecosystem , mathematics , oceanography , materials science , algorithm , composite number , composite material , biology , geotechnical engineering
Uncertainties in the 20th century carbon budget associated with the treatment of land use change (LUC) are assessed using the Canadian Centre for Climate Modelling and Analysis (CCCma) first‐generation Earth System Model (CanESM1). Eight coupled climate carbon cycle simulations are performed using different reconstructions of 1850–2000 land cover derived from historical information on changes in cropland and pasture area. The simulations provide estimates of the emissions associated with LUC, the relative contribution of changes in cropland and pasture to LUC emissions and the uncertainty associated with differences among historical data sets of crop area as well as in the manner in which the historical land cover data are constructed. The resulting estimates of the amount of biomass deforested over the 1850–2000 period range from 63 to 145 Pg C with cumulative implied LUC emissions ranging from 40 to 77 Pg C. These values of LUC emissions are considerably lower than Houghton's estimate of 156 Pg C. The year 2000 atmospheric CO 2 concentration ranges between 371.1 ± 3.7 ppm depending on the data set used and the manner in which historical land cover is constructed. This compares to the observed value of 369.6 ppm at Mauna Loa and is 17.3 ± 6.3 ppm larger than for simulations without LUC. Although increases in cropland result in the expected increase in LUC emissions, changes in pasture area decrease these emissions because of carbon sequestration in soils.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here