z-logo
Premium
The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils
Author(s) -
CUSACK DANIELA F.,
TORN MARGARET S.,
McDOWELL WILLIAM H.,
SILVER WHENDEE L.
Publication year - 2010
Publication title -
global change biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.146
H-Index - 255
eISSN - 1365-2486
pISSN - 1354-1013
DOI - 10.1111/j.1365-2486.2009.02131.x
Subject(s) - cycling , soil water , soil respiration , heterotroph , soil carbon , nitrogen cycle , environmental chemistry , carbon cycle , ecosystem , chemistry , nitrogen , environmental science , agronomy , ecology , biology , soil science , forestry , genetics , organic chemistry , bacteria , geography
Nitrogen (N) deposition is projected to increase significantly in tropical regions in the coming decades, where changes in climate are also expected. Additional N and warming each have the potential to alter soil carbon (C) storage via changes in microbial activity and decomposition, but little is known about the combined effects of these global change factors in tropical ecosystems. In this study, we used controlled laboratory incubations of soils from a long‐term N fertilization experiment to explore the sensitivity of soil C to increased N in two N‐rich tropical forests. We found that fertilization corresponded to significant increases in bulk soil C concentrations, and decreases in C loss via heterotrophic respiration ( P < 0.05). The increase in soil C was not uniform among C pools, however. The active soil C pool decomposed faster with fertilization, while slowly cycling C pools had longer turnover times. These changes in soil C cycling with N additions corresponded to the responses of two groups of microbial extracellular enzymes. Smaller active C pools corresponded to increased hydrolytic enzyme activities; longer turnover times of the slowly cycling C pool corresponded to reduced activity of oxidative enzymes, which degrade more complex C compounds, in fertilized soils. Warming increased soil respiration overall, and N fertilization significantly increased the temperature sensitivity of slowly cycling C pools in both forests. In the lower elevation forest, respired CO 2 from fertilized cores had significantly higher Δ 14 C values than control soils, indicating losses of relatively older soil C. These results indicate that soil C storage is sensitive to both N deposition and warming in N‐rich tropical soils, with interacting effects of these two global change factors. N deposition has the potential to increase total soil C stocks in tropical forests, but the long‐term stability of this added C will likely depend on future changes in temperature.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here