z-logo
Premium
Spatiotemporal fire occurrence in Borneo over a period of 10 years
Author(s) -
LANGNER ANDREAS,
SIEGERT FLORIAN
Publication year - 2009
Publication title -
global change biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.146
H-Index - 255
eISSN - 1365-2486
pISSN - 1354-1013
DOI - 10.1111/j.1365-2486.2008.01828.x
Subject(s) - deforestation (computer science) , geography , rainforest , ecosystem , peat , swamp , environmental science , period (music) , forestry , tropics , fire regime , physical geography , agroforestry , ecology , biology , archaeology , physics , computer science , acoustics , programming language
South‐east Asia's tropical rainforests are experiencing the highest rate of deforestation worldwide and fire is one of the most important drivers of forest loss and subsequent carbon dioxide emissions. In this study, we analyzed all fire events in Borneo recorded by satellites over a period of 10 years. About 16.2 Mha, which corresponds to 21% of the land surface, have been affected by fire at least once and 6% more than one time. During El Niño conditions, which cause prolonged droughts in the region, the fire‐affected area was on average three times larger than during normal weather conditions. Similarly, fires in forests affected 0.3 Mha in normal years and 1 Mha during El Niño years. Carbon rich peat swamp forest ecosystems were most severely affected. There is a pronounced difference in fire occurrence between different countries and provinces in Borneo although ecosystem and land use are very similar across the island. Compared with Sarawak, Sabah (Malaysia) and Brunei the relative annual fire‐affected area in Kalimantan, the Indonesian part of Borneo, was on average five times larger. During El Niño conditions the fire‐affected area increased only in Kalimantan and not in Brunei and the Malaysia. A similar pattern was observed in National Parks. This suggests, that El Niño related droughts are not the only cause of increased fire occurrence and do not necessarily lead to a higher number of fire events. These results improve our understanding of existing fire regimes and drivers of fire in SE Asian tropical ecosystems and may help to better protect the remaining rainforests.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom