Premium
Pure acoustic wave propagation in transversely isotropic media by the pseudospectral method
Author(s) -
Chu Chunlei,
Macy Brian K.,
Anno Phil D.
Publication year - 2013
Publication title -
geophysical prospecting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.735
H-Index - 79
eISSN - 1365-2478
pISSN - 0016-8025
DOI - 10.1111/j.1365-2478.2012.01077.x
Subject(s) - transverse isotropy , acoustic wave equation , mathematical analysis , anisotropy , differential equation , wave equation , isotropy , physics , wave propagation , pseudo spectral method , acoustic wave , mathematics , acoustics , optics , fourier transform , fourier analysis
Seismic wave propagation in transversely isotropic (TI) media is commonly described by a set of coupled partial differential equations, derived from the acoustic approximation. These equations produce pure P‐wave responses in elliptically anisotropic media but generate undesired shear‐wave components for more general TI anisotropy. Furthermore, these equations suffer from instabilities when the anisotropy parameter ε is less than δ. One solution to both problems is to use pure acoustic anisotropic wave equations, which can produce pure P‐waves without any shear‐wave contaminations in both elliptical and anelliptical TI media. In this paper, we propose a new pure acoustic transversely isotropic wave equation, which can be conveniently solved using the pseudospectral method. Like most other pure acoustic anisotropic wave equations, our equation involves complicated pseudo‐differential operators in space which are difficult to handle using the finite difference method. The advantage of our equation is that all of its model parameters are separable from the spatial differential and pseudo‐differential operators; therefore, the pseudospectral method can be directly applied. We use phase velocity analysis to show that our equation, expressed in a summation form, can be properly truncated to achieve the desired accuracy according to anisotropy strength. This flexibility allows us to save computational time by choosing the right number of summation terms for a given model. We use numerical examples to demonstrate that this new pure acoustic wave equation can produce highly accurate results, completely free from shear‐wave artefacts. This equation can be straightforwardly generalized to tilted TI media.