z-logo
Premium
Estimation of changes in water column velocities and thicknesses from time lapse seismic data
Author(s) -
Osdal Bård,
Landrø Martin
Publication year - 2011
Publication title -
geophysical prospecting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.735
H-Index - 79
eISSN - 1365-2478
pISSN - 0016-8025
DOI - 10.1111/j.1365-2478.2010.00923.x
Subject(s) - hyperbola , diffraction , geology , inversion (geology) , geodesy , reflection (computer programming) , economic geology , optics , mineralogy , seismology , hydrogeology , geometry , mathematics , physics , geotechnical engineering , telmatology , tectonics , computer science , programming language
Sea‐bed diffractions are frequently observed for several of the fields in the Norwegian Sea and the Barents Sea. This is a challenge in time lapse seismic analysis, since diffracted multiples are difficult to remove by processing and therefore is a major source of poor time lapse data quality. In this work we test if the diffractions can be used for enhanced 4D interpretation. By analysing the time‐shift of the sea‐bed diffraction hyperbola between the base and monitor it is tested if changes in water velocity and tides can be estimated. Two models using time lapse diffraction analysis are tested: the first one simply adds time‐shifts for the two branches of the diffraction hyperbola and this average time‐shift is then used to estimate the water velocity change. The other method uses an inversion method based on the diffraction equation for a point diffractor to estimate the velocity change. In‐line common‐midpoint shifts are estimated by subtracting the time‐shifts of both hyperbola branches followed by direct inversion. The diffraction based time‐shifts are compared to time‐shifts estimated by standard cross‐correlation of the sea‐bed reflection. The averaging method gives slightly higher uncertainties, while the inversion using an exact traveltime equation gives similar uncertainties compared to the sea‐bed reflection method.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here