Premium
Interpretation of regional aeromagnetic data by the scaling function method: the case of Southern Apennines (Italy)
Author(s) -
Florio G.,
Fedi M.,
Rapolla A.
Publication year - 2009
Publication title -
geophysical prospecting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.735
H-Index - 79
eISSN - 1365-2478
pISSN - 0016-8025
DOI - 10.1111/j.1365-2478.2009.00807.x
Subject(s) - geology , geophysics , anomaly (physics) , scaling , magnetic anomaly , seismology , field (mathematics) , volcano , geodesy , geometry , physics , mathematics , pure mathematics , condensed matter physics
A complex aeromagnetic anomaly in Southern Apennines (Italy) is analysed and interpreted by a multiscale method based on the scaling function. We use multiscale methods allowing analysis of a potential field along ridges, which are lines defined by the position of the extrema of the field at the considered scales. The method developed and applied in this paper is based on the study of the scaling function of the total magnetic field. It allows recovering of source parameters such as depth and structural index. The studied area includes a Pleistocene volcanic structure (Mt. Vulture) whose intense dipolar anomaly is superimposed on a longer wavelength regional anomaly. The interpretation of ridges of the modulus of the analytic signal at different altitude ranges allows recognition of at least three distinct sources between about 5 km and 20 km depth. Their interpretation is discussed in light of borehole data and other geophysical constraints. A reasonable geological model for these sources indicates the presence of intrusions, probably linked to the past activity of Mt. Vulture.