z-logo
Premium
Asymmetry in the time‐lapse seismic response to injection and depletion
Author(s) -
Sayers Colin M.
Publication year - 2007
Publication title -
geophysical prospecting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.735
H-Index - 79
eISSN - 1365-2478
pISSN - 0016-8025
DOI - 10.1111/j.1365-2478.2007.00636.x
Subject(s) - pore water pressure , geology , stress (linguistics) , amplitude , grain boundary , mineralogy , geotechnical engineering , materials science , composite material , optics , philosophy , linguistics , physics , microstructure
Large changes in seismic reflection amplitude have been observed around injectors, and result from the decrease in elastic‐wave velocity due to the increase in pore pressure in the reservoir. In contrast, the velocity change resulting from the decrease in pore pressure in depleting reservoirs is observed to be smaller in magnitude. Elastic‐wave velocities in sandstones vary with stress due to the presence of stress‐sensitive grain boundaries within the rock. Grain‐boundary stiffness increases non‐linearly with increasing compressive stress, due to increased contact between opposing faces of the boundary. This results in a change in velocity due to a decrease in pore pressure that is smaller than the change in velocity caused by an increase in pore pressure, in agreement with time‐lapse seismic observations. The decrease in porosity resulting from depletion is not fully recovered upon re‐pressurization, and this leads to an additional steepening of the velocity vs. effective stress curve for injection relative to depletion. This difference is enhanced by any breakage of cement or weakening of grain contacts that may occur during depletion and by the reopening or formation of fractures or joints and dilation of grain boundaries that may occur during injection.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here