Premium
Bayesian inference of the Cole–Cole parameters from time‐ and frequency‐domain induced polarization
Author(s) -
Ghorbani A.,
Camerlynck C.,
Florsch N.,
Cosenza P.,
Revil A.
Publication year - 2007
Publication title -
geophysical prospecting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.735
H-Index - 79
eISSN - 1365-2478
pISSN - 0016-8025
DOI - 10.1111/j.1365-2478.2007.00627.x
Subject(s) - frequency domain , time domain , bayesian inference , polarization (electrochemistry) , uniqueness , bayesian probability , a priori and a posteriori , inverse problem , algorithm , mathematics , computer science , statistics , mathematical analysis , chemistry , philosophy , epistemology , computer vision
The inversion of induced‐polarization parameters is important in the characterization of the frequency electrical response of porous rocks. A Bayesian approach is developed to invert these parameters assuming the electrical response is described by a Cole–Cole model in the time or frequency domain. We show that the Bayesian approach provides a better analysis of the uncertainty associated with the parameters of the Cole–Cole model compared with more conventional methods based on the minimization of a cost function using the least‐squares criterion. This is due to the strong non‐linearity of the inverse problem and non‐uniqueness of the solution in the time domain. The Bayesian approach consists of propagating the information provided by the measurements through the model and combining this information with a priori knowledge of the data. Our analysis demonstrates that the uncertainty in estimating the Cole–Cole model parameters from induced‐polarization data is much higher for measurements performed in the time domain than in the frequency domain. Our conclusion is that it is very difficult, if not impossible, to retrieve the correct value of the Cole–Cole parameters from time‐domain induced‐polarization data using standard least‐squares methods. In contrast, the Cole–Cole parameters can be more correctly inverted in the frequency domain. These results are also valid for other models describing the induced‐polarization spectral response, such as the Cole–Davidson or power law models.