Premium
Multi‐refractor imaging with stacked refraction convolution section
Author(s) -
De Franco Roberto
Publication year - 2005
Publication title -
geophysical prospecting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.735
H-Index - 79
eISSN - 1365-2478
pISSN - 0016-8025
DOI - 10.1111/j.1365-2478.2005.00478.x
Subject(s) - refracting telescope , stacking , geology , refraction , noise (video) , signal (programming language) , optics , signal to noise ratio (imaging) , reflection (computer programming) , computer science , physics , artificial intelligence , image (mathematics) , nuclear magnetic resonance , programming language
Multi‐refractor imaging is a technique for constructing a single two‐dimensional image of a number of refractors by stacking multiple convolved and cross‐correlated reversed shot records. The method is most effective with high‐fold data that have been obtained with roll‐along acquisition programs because the stacking process significantly improves the signal‐to‐noise ratios. The major advantage of the multi‐refractor imaging method is that all the data can be stacked to maximize the signal‐to‐noise ratios before the measurement of any traveltimes. However, the signal‐to‐noise ratios can be further increased if only those traces that have arrivals from the same refractor are used, and if the correct reciprocal times or traces are employed. A field case study shows that multi‐refractor imaging can produce a cross‐section similar to the familiar reflection cross‐section with substantially higher signal‐to‐noise ratios for the equivalent interfaces.